COVID-19 Evidence Alerts
from McMaster PLUSTM

Current best evidence for clinical care (more info)

COVID-19 Evidence Alerts needs your support. If our service is of value to you, please consider donating to keep it going. Learn more Donate now

Diagnosis Dinnes J, Deeks JJ, Berhane S, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev. 2021 Mar 24;3:CD013705. doi: 10.1002/14651858.CD013705.pub2.
Abstract

BACKGROUND: Accurate rapid diagnostic tests for SARS-CoV-2 infection could contribute to clinical and public health strategies to manage the COVID-19 pandemic. Point-of-care antigen and molecular tests to detect current infection could increase access to testing and early confirmation of cases, and expediate clinical and public health management decisions that may reduce transmission.

OBJECTIVES: To assess the diagnostic accuracy of point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups.

SEARCH METHODS: Electronic searches of the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) were undertaken on 30 Sept 2020. We checked repositories of COVID-19 publications and included independent evaluations from national reference laboratories, the Foundation for Innovative New Diagnostics and the Diagnostics Global Health website to 16 Nov 2020. We did not apply language restrictions.

SELECTION CRITERIA: We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen or molecular tests suitable for a point-of-care setting (minimal equipment, sample preparation, and biosafety requirements, with results within two hours of sample collection). We included all reference standards that define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction (RT-PCR) tests and established diagnostic criteria).

DATA COLLECTION AND ANALYSIS: Studies were screened independently in duplicate with disagreements resolved by discussion with a third author. Study characteristics were extracted by one author and checked by a second; extraction of study results and assessments of risk of bias and applicability (made using the QUADAS-2 tool) were undertaken independently in duplicate. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and pooled data using the bivariate model separately for antigen and molecular-based tests. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status.

MAIN RESULTS: Seventy-eight study cohorts were included (described in 64 study reports, including 20 pre-prints), reporting results for 24,087 samples (7,415 with confirmed SARS-CoV-2). Studies were mainly from Europe (n = 39) or North America (n = 20), and evaluated 16 antigen and five molecular assays. We considered risk of bias to be high in 29 (50%) studies because of participant selection; in 66 (85%) because of weaknesses in the reference standard for absence of infection; and in 29 (45%) for participant flow and timing. Studies of antigen tests were of a higher methodological quality compared to studies of molecular tests, particularly regarding the risk of bias for participant selection and the index test. Characteristics of participants in 35 (45%) studies differed from those in whom the test was intended to be used and the delivery of the index test in 39 (50%) studies differed from the way in which the test was intended to be used. Nearly all studies (97%) defined the presence or absence of SARS-CoV-2 based on a single RT-PCR result, and none included participants meeting case definitions for probable COVID-19. Antigen tests Forty-eight studies reported 58 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies. There were differences between symptomatic (72.0%, 95% CI 63.7% to 79.0%; 37 evaluations; 15530 samples, 4410 cases) and asymptomatic participants (58.1%, 95% CI 40.2% to 74.1%; 12 evaluations; 1581 samples, 295 cases). Average sensitivity was higher in the first week after symptom onset (78.3%, 95% CI 71.1% to 84.1%; 26 evaluations; 5769 samples, 2320 cases) than in the second week of symptoms (51.0%, 95% CI 40.8% to 61.0%; 22 evaluations; 935 samples, 692 cases). Sensitivity was high in those with cycle threshold (Ct) values on PCR =25 (94.5%, 95% CI 91.0% to 96.7%; 36 evaluations; 2613 cases) compared to those with Ct values >25 (40.7%, 95% CI 31.8% to 50.3%; 36 evaluations; 2632 cases). Sensitivity varied between brands. Using data from instructions for use (IFU) compliant evaluations in symptomatic participants, summary sensitivities ranged from 34.1% (95% CI 29.7% to 38.8%; Coris Bioconcept) to 88.1% (95% CI 84.2% to 91.1%; SD Biosensor STANDARD Q). Average specificities were high in symptomatic and asymptomatic participants, and for most brands (overall summary specificity 99.6%, 95% CI 99.0% to 99.8%). At 5% prevalence using data for the most sensitive assays in symptomatic people (SD Biosensor STANDARD Q and Abbott Panbio), positive predictive values (PPVs) of 84% to 90% mean that between 1 in 10 and 1 in 6 positive results will be a false positive, and between 1 in 4 and 1 in 8 cases will be missed. At 0.5% prevalence applying the same tests in asymptomatic people would result in PPVs of 11% to 28% meaning that between 7 in 10 and 9 in 10 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. No studies assessed the accuracy of repeated lateral flow testing or self-testing. Rapid molecular assays Thirty studies reported 33 evaluations of five different rapid molecular tests. Sensitivities varied according to test brand. Most of the data relate to the ID NOW and Xpert Xpress assays. Using data from evaluations following the manufacturer's instructions for use, the average sensitivity of ID NOW was 73.0% (95% CI 66.8% to 78.4%) and average specificity 99.7% (95% CI 98.7% to 99.9%; 4 evaluations; 812 samples, 222 cases). For Xpert Xpress, the average sensitivity was 100% (95% CI 88.1% to 100%) and average specificity 97.2% (95% CI 89.4% to 99.3%; 2 evaluations; 100 samples, 29 cases). Insufficient data were available to investigate the effect of symptom status or time after symptom onset.

AUTHORS' CONCLUSIONS: Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. The assays shown to meet appropriate criteria, such as WHO's priority target product profiles for COVID-19 diagnostics ('acceptable' sensitivity = 80% and specificity = 97%), can be considered as a replacement for laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. Positive predictive values suggest that confirmatory testing of those with positive results may be considered in low prevalence settings. Due to the variable sensitivity of antigen tests, people who test negative may still be infected. Evidence for testing in asymptomatic cohorts was limited. Test accuracy studies cannot adequately assess the ability of antigen tests to differentiate those who are infectious and require isolation from those who pose no risk, as there is no reference standard for infectiousness. A small number of molecular tests showed high accuracy and may be suitable alternatives to RT-PCR. However, further evaluations of the tests in settings as they are intended to be used are required to fully establish performance in practice. Several important studies in asymptomatic individuals have been reported since the close of our search and will be incorporated at the next update of this review. Comparative studies of antigen tests in their intended use settings and according to test operator (including self-testing) are required.

Ratings
Discipline / Specialty Area Score
Emergency Medicine
Respirology/Pulmonology
Public Health
Pediatric Emergency Medicine
Infectious Disease
General Internal Medicine-Primary Care(US)
Family Medicine (FM)/General Practice (GP)
Hospital Doctor/Hospitalists
Internal Medicine
Intensivist/Critical Care
Pediatric Hospital Medicine
Pediatrics (General)
Comments from MORE raters

Emergency Medicine rater

Rapid and accurate COVID tests are still direly needed in acute care settings because the isolation requirements for potential cases is placing significant strains on capacity. This work is encouraging and justifies the move to rapid testing, especially if it's cost-effective and at low-risk of false-negatives in the appropriately selected patients. If the rapid tests are contributing to hospital outbreaks, they may not be ready for prime-time.

Emergency Medicine rater

This is the latest entry in a series of meta-analyses of the accuracy of point of care testing (rapid antigen and molecular-based) for COVID-19 compared to the criterion standard of reverse transcription polymerase chain reaction tests in patients with suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection. The exhaustive search yielded 78 study cohorts in 44 papers and 20 preprints. Risk of bias varied. For rapid antigen tests, specificities were 99.6%. Sensitivities were 72% for symptomatic patients and 58% for asymptomatic patients. Sensitivities were higher in the first week after symptom onset (78%) compared to the second week (51%) and varied by the brand. Results varied by brand. For the ID NOW rapid molecular test, sensitivity was 73% and specificity, 99.7%. For the Xpert Xpress rapid molecular test, sensitivity was 1200% and specificity, 97.2%.

Infectious Disease rater

Good careful summary.

Infectious Disease rater

Excellent review. Evaluation of these rapid tests is “almost there” in guiding their better utilization. I hope the next update will get us closer to the finish line.

Intensivist/Critical Care rater

Low sensitivity and high specificity, so useful to rule in but not out.

Intensivist/Critical Care rater

Excellent review of testing methodology for COVID-19. This paper is not widely understood by relevant ICU care givers.

Internal Medicine rater

It is problematic when Covid-related reviews are based on searches > 6 months old.

Internal Medicine rater

Timely and needed review for everyone.

Pediatrics (General) rater

As a doctor, |I am prone to using these antigen tests. The likelihood ratio (LR) of the exams is approximately 78. The WHO recommendations for this exams reach a LR of 26 or 27.

Pediatrics (General) rater

Good review and more promising in a rapidly changing environment.

Public Health rater

This is a very important and relevant review for COVID-19 with good search and appraisal methods. The challenge to find asymptomatic carriers is limited in this review. Test accuracy studies cannot adequately assess the ability of antigen tests to differentiate those who are infectious and require isolation from those who are low risk. Further studies on this topic are warranted.