Baru oil (Dipteryx alata vog.) applied in the formation of O/W nanoemulsions: A study of physical-chemical, rheological and interfacial properties

Food Res Int. 2023 Aug:170:112961. doi: 10.1016/j.foodres.2023.112961. Epub 2023 May 15.

Abstract

The oil extracted from baru (Dipteryx alata Vog.) seeds is in bioactive compounds and it presents potential to be used in food and cosmetic industries. Therefore, this study aims to provide insights into the stability of baru oil-in-water (O/W) nanoemulsions. For this purpose, the effects of the ionic strength (0, 100 and 200 mM), pH (6, 7 and 8), and storage time (28 days) on the kinetic stability of these colloidal dispersions were evaluated. The nanoemulsions were characterized in terms of interfacial properties, rheology, zeta potential (ζ), average droplet diameter, polydispersity index (PDI), microstructure, and creaming index. In general, for samples, the equilibrium interfacial tension ranged from 1.21 to 3.4 mN.m-1, and the interfacial layer presented an elastic behavior with low dilatational viscoelasticity. Results show that the nanoemulsions present a Newtonian flow behavior, with a viscosity ranging from 1.99 to 2.39 mPa.s. The nanoemulsions presented an average diameter of 237-315 nm with a low polydispersity index (<0.39), and a ζ-potential ranging from 39.4 to 50.3 mV after 28 days of storage at 25 °C. The results obtained for the ζ-potential suggest strong electrostatic repulsions between the droplets, which is an indicative of relative kinetic stability. In fact, macroscopically, all the nanoemulsions were relatively stable after 28 days of storage, except the nanoemulsions added with NaCl. Nanoemulsions produced with baru oil present a great potential to be used in the food, cosmetic, and pharmaceutical industries.

Keywords: Food emulsion; Interfacial tension; Interfacial viscoelasticity; Kinetic stability; Zeta potential.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dipteryx*
  • Disgust*
  • Kinetics
  • Rheology
  • Seeds