Effects of Functional Electrical Stimulation on Gait Characteristics in Healthy Individuals: A Systematic Review

Sensors (Basel). 2023 Oct 24;23(21):8684. doi: 10.3390/s23218684.

Abstract

Background: This systematic review aimed to provide a comprehensive overview of the effects of functional electrical stimulation (FES) on gait characteristics in healthy individuals.

Methods: Six electronic databases (PubMed, Embase, Epistemonikos, PEDro, COCHRANE Library, and Scopus) were searched for studies evaluating the effects of FES on spatiotemporal, kinematic, and kinetic gait parameters in healthy individuals. Two examiners evaluated the eligibility and quality of the included studies using the PEDro scale.

Results: A total of 15 studies met the inclusion criteria. The findings from the literature reveal that FES can be used to modify lower-limb joint kinematics, i.e., to increase or reduce the range of motion of the hip, knee, and ankle joints. In addition, FES can be used to alter kinetics parameters, including ground reaction forces, center of pressure trajectory, or knee joint reaction force. As a consequence of these kinetics and kinematics changes, FES can lead to changes in spatiotemporal gait parameters, such as gait speed, step cadence, and stance duration.

Conclusions: The findings of this review improve our understanding of the effects of FES on gait biomechanics in healthy individuals and highlight the potential of this technology as a training or assistive solution for improving gait performance in this population.

Keywords: able-bodied; electrical muscle stimulation; kinematics; kinetics; peripheral neuromodulation; spatiotemporal; walking.

Publication types

  • Systematic Review
  • Review

MeSH terms

  • Biomechanical Phenomena
  • Gait* / physiology
  • Humans
  • Knee
  • Knee Joint / physiology
  • Lower Extremity / physiology
  • Walking* / physiology