Porous versus solid shoulder implants in humeri of different bone densities: A finite element analysis

J Orthop Res. 2024 Mar 23. doi: 10.1002/jor.25840. Online ahead of print.

Abstract

Porous metallic prosthesis components can now be manufactured using additive manufacturing techniques, and may prove beneficial for promoting bony ingrowth, for accommodating drug delivery systems, and for reducing stress shielding. Using finite element modeling techniques, 36 scenarios (three porous stems, three bone densities, and four held arm positions) were analysed to assess the viability of porous humeral stems for use in total shoulder arthroplasty, and their resulting mechanobiological impact on the surrounding humerus bone. All three porous stems were predicted to experience stresses below the yield strength of Ti6Al4V (880 MPa) and to be capable of withstanding more than 10 million cycles of each loading scenario before failure. There was an indication that within an 80 mm region of the proximal humerus, there would be a reduction in bone resorption as stem porosity increased. Overall, this study shows promise that these porous structures are mechanically viable for incorporation into permanent shoulder prostheses to combat orthopedic infections.

Keywords: finite element modeling; gyroids; implant design; shoulder arthroplasty; stress shielding.