Energy Metabolism in Gynecological Cancers: A Scoping Review

Int J Environ Res Public Health. 2022 May 25;19(11):6419. doi: 10.3390/ijerph19116419.

Abstract

Determining energy requirements is vital for optimizing nutrition interventions in pro-catabolic conditions such as cancer. Gynecological cancer encompasses the most common malignancies in women, yet there is a paucity of research on its metabolic implications. The aim of this review was to explore the literature related to energy metabolism in gynecological cancers. We were particularly interested in exploring the prevalence of energy metabolism abnormalities, methodological approaches used to assess energy metabolism, and clinical implications of inaccurately estimating energy needs. A search strategy was conducted from inception to 27 July 2021. Studies investigating energy metabolism using accurate techniques in adults with any stage of gynecological cancer and the type of treatment were considered. Of the 874 articles screened for eligibility, five studies were included. The definition of energy metabolism abnormalities varied among studies. Considering this limitation, four of the five studies reported hypermetabolism. One of these studies found that hypermetabolism was more prevalent in ovarian compared to cervical cancer. Of the included studies, one reported normometabolism at the group level; individual-level values were not reported. One of the studies reported hypermetabolism pre- and post-treatment, but normometabolism when re-assessed two years post-treatment. No studies explored clinical implications of inaccurately estimating energy needs. Overall, commonly used equations may not accurately predict energy expenditure in gynecological cancers, which can profoundly impact nutritional assessment and intervention.

Keywords: cancer; energy expenditure; energy metabolism; energy needs; gynecological cancers; nutrition assessment; resting energy expenditure; review.

Publication types

  • Review
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Energy Metabolism*
  • Female
  • Humans
  • Nutrition Assessment
  • Nutritional Requirements
  • Prevalence
  • Uterine Cervical Neoplasms*