Flatfoot arch correction with generic 3D-printed orthoses at different body weight percentages

Foot (Edinb). 2024 Mar 18:59:102093. doi: 10.1016/j.foot.2024.102093. Online ahead of print.

Abstract

Background: Flatfoot can be associated with foot pathologies and treated conservatively with foot orthoses to correct arch collapse and alleviate painful symptoms. Recently, 3D printing has become more popular and is widely used for medical device manufacturing, such as orthoses. This study aims at quantifying the effect of generic 3D-printed foot orthoses on flatfoot arch correction under different static loading conditions.

Methods: Participants with normal and flatfeet were recruited for this cross-sectional study. Clinical evaluation included arch height, foot posture index, and Beighton flexibility score. Surface imaging was performed in different loading conditions: 1) 0% when sitting, 2) 50% when standing on both feet, and 3) 125% when standing on one foot with a weighted vest. For flatfoot participants, three configurations were tested: without an orthosis, with a soft generic 3D printed orthosis, and with a rigid 3D printed orthosis. Arch heights and medial arch angles were calculated and compared for the different loading conditions and with or without orthoses. The differences between groups, with and without orthoses, were analyzed with Kruskal-Wallis tests, and a p < 0.05 was considered significant.

Results: A total of 10 normal feet and 10 flatfeet were analyzed. The 3D printed orthosis significantly increased arch height in all loading conditions, compared to flatfeet without orthosis. Wearing an orthosis reduced the medial arch angle, although not significantly. Our technique was found to have good to excellent intra and interclass correlation coefficients.

Conclusions: Generic 3D printed orthoses corrected arch collapse in static loading conditions, including 125% body weight to simulate functional tasks like walking. Our protocol was found to be reliable and easier to implement in a clinical setting compared to previously reported methods.

Level of evidence: II.

Keywords: 3D printing; Arch collapse; Arch height; Flatfoot; Medial arch angle; Orthosis; Weightbearing.